Inherits from

Callable, Usable, Importable, Expression, HasName, Editable

Properties


call_sites

Returns all call sites (invocations) of this callable in the codebase.

Finds all locations in the codebase where this callable is invoked/called. Call sites exclude imports, certain exports, and external references.

Returns: list[FunctionCall]: A list of FunctionCall objects representing each invocation of this callable. Returns empty list if the callable has no name.

def call_sites(self) -> list[FunctionCall]:
    ...

dependencies

Returns a list of symbols that this symbol depends on.

Returns a list of symbols (including imports) that this symbol directly depends on. The returned list is sorted by file location for consistent ordering.

Returns: list[Union[Symbol, Import]]: A list of symbols and imports that this symbol directly depends on, sorted by file location.

def dependencies(self) -> list[Union["Symbol", "Import"]]:
    ...

extended

Returns a SymbolGroup of all extended nodes associated with this element.

Creates a SymbolGroup that provides a common interface for editing all extended nodes, such as decorators, modifiers, and comments associated with the element.

Args: None

Returns: SymbolGroup: A group containing this node and its extended nodes that allows batch modification through a common interface.

def extended(self) -> SymbolGroup:
    ...

extended_source

Returns the source text representation of all extended nodes.

Gets the source text of all extended nodes combined. This property allows reading the source text of all extended nodes (e.g. decorators, export statements) associated with this node.

Returns: str: The combined source text of all extended nodes.

def extended_source(self) -> str:
    ...

file

File property for ExternalModule class.

Returns None since ExternalModule represents an external module that is not part of any local file.

Returns: None: Always returns None as ExternalModule is not associated with any file.

def file(self) -> None:
    ...

filepath

Returns the filepath of the module.

For an ExternalModule, this will always return an empty string as it represents an external module that does not belong to the local codebase.

Returns: str: An empty string representing the filepath of the external module.

def filepath(self) -> str:
    ...

full_name

Returns the full name of the object, including the namespace path.

Returns the complete qualified name of an object, including any parent class or namespace paths. For class methods, this returns the parent class’s full name followed by the method name. For chained attributes (e.g., ‘a.b’), this returns the full chained name.

Args: None

Returns: str | None: The complete qualified name of the object. Returns None if no name is available. For class methods, returns ‘ParentClass.method_name’. For chained attributes, returns the full chain (e.g., ‘a.b’). For simple names, returns just the name.

def full_name(self) -> str | None:
    ...

function_calls

Returns a list of all function calls contained within this expression.

Traverses the extended nodes of this expression to find all function calls within it. This is useful for tasks like analyzing call patterns or renaming function invocations.

Returns: list[FunctionCall]: A list of FunctionCall objects representing all function calls contained within this expression.

def function_calls(self) -> list[FunctionCall]:
    ...

name

Retrieves the name of the object excluding any namespace prefixes.

Returns the “base” name of the object without any namespace or module prefix. For instance, for an object ‘a.b’, this method returns ‘b’.

Returns: str | None: The base name of the object as a string, or None if there is no associated name node.

def name(self) -> str | None:
    ...

parameters

Returns list of named parameters from an external function symbol.

Retrieves the parameter list from an external module function. This is not yet implemented and will raise an error.

Returns: list[Parameter]: A list of parameters associated with the external function.

Raises: NotImplementedError: This functionality is not yet supported for external modules.

def parameters(self) -> list[Parameter]:
    ...

resolved_value

Returns the resolved type of an Expression.

Returns the inferred type of the expression. For example a function call’s resolved value will be it’s definition.

Returns: Union[Expression, list[Expression]]: The resolved expression type(s). Returns a single Expression if there is only one resolved type, or a list of Expressions if there are multiple resolved types. Returns self if the expression is not resolvable or has no resolved types.

def resolved_value(self) -> Expression | list[Expression]:
    ...

source

Text representation of the Editable instance.

Returns the source text of the Editable instance. This is the main property used to access the text content of any code element in GraphSitter.

Returns: str: The text content of this Editable instance.

def source(self) -> str:
    ...

variable_usages

Returns Editables for all TreeSitter node instances of variable usages within this node’s scope.

This method finds all variable identifier nodes in the TreeSitter AST, excluding:

  • Function names in function calls
  • Import names in import statements
  • Property access identifiers (except the base object)
  • Keyword argument names (in Python and TypeScript)

This is useful for variable renaming and usage analysis within a scope.

Returns: list[Editable]: A list of Editable nodes representing variable usages. Each Editable corresponds to a TreeSitter node instance where the variable is referenced.

def variable_usages(self) -> list[Editable]:
    ...

Methods


call_graph_successors

Returns all function call definitions that are reachable from this callable.

Analyzes the callable’s implementation to find all function calls and their corresponding definitions. For classes, if a constructor exists, returns the call graph successors of the constructor; otherwise returns an empty list.

Args: include_classes (bool): If True, includes class definitions in the results. Defaults to True. include_external (bool): If True, includes external module definitions in the results. Defaults to True.

Returns: list[FunctionCallDefinition]: A list of FunctionCallDefinition objects, each containing a function call and its possible callable definitions (Functions, Classes, or ExternalModules based on include flags). Returns empty list for non-block symbols or classes without constructors.

def call_graph_successors(
        self,
        *,
        include_classes: bool = True,
        include_external: bool = True,
    ) -> list[FunctionCallDefinition]:
    ...

commit

Commits any pending transactions for the current node to the codebase.

Commits only the transactions that affect the file this node belongs to. This is useful when you want to commit changes made to a specific node without committing all pending transactions in the codebase.

Args: None

Returns: None

def commit(self) -> None:
    ...

edit

Replace the source of this Editable with new_src.

Replaces the text representation of this Editable instance with new text content. The method handles indentation adjustments and transaction management.

Args: new_src (str): The new source text to replace the current text with. fix_indentation (bool): If True, adjusts the indentation of new_src to match the current text’s indentation level. Defaults to False. priority (int): The priority of the edit transaction. Higher priority edits are applied first. Defaults to 0. dedupe (bool): If True, deduplicates identical transactions. Defaults to True.

Returns: None

def edit(self, new_src: str, fix_indentation: bool = False, priority: int = 0, dedupe: bool = True) -> None:
    ...

find

Find and return matching nodes or substrings within an Editable instance.

This method searches through the extended_nodes of the Editable instance and returns all nodes or substrings that match the given search criteria.

Args: strings_to_match (Union[list[str], str]): One or more strings to search for. exact (bool): If True, only return nodes whose source exactly matches one of the strings_to_match. If False, return nodes that contain any of the strings_to_match as substrings. Defaults to False.

Returns: list[Editable]: A list of Editable instances that match the search criteria.

def find(self, strings_to_match: list[str] | str, *, exact: bool = False) -> list[Editable]:
    ...

find_string_literals

Returns a list of string literals within this node’s source that match any of the given strings.

Args: strings_to_match (list[str]): A list of strings to search for in string literals. fuzzy_match (bool): If True, matches substrings within string literals. If False, only matches exact strings. Defaults to False.

Returns: list[Editable]: A list of Editable objects representing the matching string literals.

def find_string_literals(self, strings_to_match: list[str], fuzzy_match: bool = False) -> list[Editable]:
    ...

flag

Adds a visual flag comment to the end of this Editable’s source text.

Flags this Editable by appending a comment with emoji flags at the end of its source text. This is useful for visually highlighting specific nodes in the source code during development and debugging.

Returns: None

def flag(self, **kwargs: Unpack[FlagKwargs]) -> CodeFlag[Self]:
    ...

from_import

Creates an ExternalModule instance from an Import instance.

This class method creates a new ExternalModule object that represents an external module that can be referenced in the codebase, such as ‘datetime’ or other imported modules. External modules are added to the graph during import resolution.

Args: imp (Import): An Import instance containing the module information.

Returns: ExternalModule: A new ExternalModule instance representing the external module.

def from_import(cls, imp: Import) -> ExternalModule:
    ...

get_import_string

Returns the import string used to import this module.

Gets the string representation needed to import this external module. This method is used to generate import statements.

Args: alias (str | None, optional): An alternative name for the imported module. module (str | None, optional): The module from which to import. import_type (ImportType, optional): The type of import to generate. Defaults to ImportType.UNKNOWN. is_type_import (bool, optional): Whether this is a type import. Defaults to False.

Returns: str: The import string that can be used to import this module.

def get_import_string(self, alias: str | None = None, module: str | None = None, import_type: ImportType = ImportType.UNKNOWN, is_type_import: bool = False) -> str:
    ...

get_name

Returns the Name node of the object.

Retrieves the name node of the object which can be used for modification operations.

Returns: Name | ChainedAttribute | None: The name node of the object. Can be a Name node for simple names, a ChainedAttribute for names with namespaces (e.g., a.b), or None if the object has no name.

def get_name(self) -> Name | ChainedAttribute | None:
    ...

get_parameter

Gets a specific parameter from the callable’s parameters list by name.

Args: name (str): The name of the parameter to retrieve.

Returns: TParameter | None: The parameter with the specified name, or None if no parameter with that name exists or if there are no parameters.

def get_parameter(self, name: str) -> TParameter | None:
    ...

get_parameter_by_index

Returns the parameter at the given index.

Retrieves a parameter from the callable’s parameter list based on its positional index.

Args: index (int): The index of the parameter to retrieve.

Returns: TParameter | None: The parameter at the specified index, or None if the parameter list is empty or the index does not exist.

def get_parameter_by_index(self, index: int) -> TParameter | None:
    ...

get_parameter_by_type

Retrieves a parameter from the callable by its type.

Searches through the callable’s parameters to find a parameter with the specified type.

Args: type (Symbol): The type to search for.

Returns: TParameter | None: The parameter with the specified type, or None if no parameter is found or if the callable has no parameters.

def get_parameter_by_type(self, type: "Symbol") -> TParameter | None:
    ...

get_variable_usages

Returns Editables for all TreeSitter nodes corresponding to instances of variable usage that matches the given variable name.

Retrieves a list of variable usages that match a specified name, with an option for fuzzy matching. By default, excludes property identifiers and argument keywords.

Args: var_name (str): The variable name to search for. fuzzy_match (bool): If True, matches variables where var_name is a substring. If False, requires exact match. Defaults to False.

Returns: list[Editable]: List of Editable objects representing variable usage nodes matching the given name.

def get_variable_usages(self, var_name: str, fuzzy_match: bool = False) -> list[Editable]:
    ...

insert_after

Inserts code after this node.

Args: new_src (str): The source code to insert after this node. fix_indentation (bool, optional): Whether to adjust the indentation of new_src to match the current node. Defaults to False. newline (bool, optional): Whether to add a newline before the new_src. Defaults to True. priority (int, optional): Priority of the insertion transaction. Defaults to 0. dedupe (bool, optional): Whether to deduplicate identical transactions. Defaults to True.

Returns: None

def insert_after(self, new_src: str, fix_indentation: bool = False, newline: bool = True, priority: int = 0, dedupe: bool = True) -> None:
    ...

insert_before

Inserts text before this node’s source with optional indentation and newline handling.

This method inserts the provided text before the current node’s source code. It can automatically handle indentation and newline placement.

Args: new_src (str): The text to insert before this node. fix_indentation (bool): Whether to fix the indentation of new_src to match the current node. Defaults to False. newline (bool): Whether to add a newline after new_src. Defaults to True. priority (int): Transaction priority for managing multiple edits. Defaults to 0. dedupe (bool): Whether to deduplicate identical transactions. Defaults to True.

Returns: None

def insert_before(self, new_src: str, fix_indentation: bool = False, newline: bool = True, priority: int = 0, dedupe: bool = True) -> None:
    ...

json

def json(self, max_depth: int = 2, methods: bool = True) -> JSON:
    ...

reduce_condition

Reduces an editable to the following condition

def reduce_condition(self, bool_condition: bool, node: Editable | None = None) -> None:
    ...

remove

Deletes this Node and its related extended nodes (e.g. decorators, comments).

Removes the current node and its extended nodes (e.g. decorators, comments) from the codebase. After removing the node, it handles cleanup of any surrounding formatting based on the context.

Args: delete_formatting (bool): Whether to delete surrounding whitespace and formatting. Defaults to True. priority (int): Priority of the removal transaction. Higher priority transactions are executed first. Defaults to 0. dedupe (bool): Whether to deduplicate removal transactions at the same location. Defaults to True.

Returns: None

def remove(self, delete_formatting: bool = True, priority: int = 0, dedupe: bool = True) -> None:
    ...

rename

Renames the symbol and all its references in the codebase.

Renames a symbol to a new name and updates all references to that symbol throughout the codebase, including imports and call sites.

Args: new_name (str): The new name for the symbol. priority (int): Priority of the edit operation. Defaults to 0.

Returns: tuple[NodeId, NodeId]: A tuple containing the file node ID and the new node ID of the renamed symbol.

def rename(self, new_name: str, priority: int = 0):
    ...

replace

Search and replace occurrences of text within this node’s source and its extended nodes.

This method performs string replacement similar to Python’s string.replace(), with support for regex patterns. It operates on both the main node and any extended nodes (e.g. decorators, exports).

Args: old (str): The text or pattern to search for. new (str): The text to replace matches with. count (int, optional): Maximum number of replacements to make. Defaults to -1 (replace all). is_regex (bool, optional): Whether to treat ‘old’ as a regex pattern. Defaults to False. priority (int, optional): Priority of the replacement operation. Defaults to 0.

Returns: int: The total number of replacements made.

Raises: ValueError: If there are multiple occurrences of the substring in a node’s source.

def replace(self, old: str, new: str, count: int = -1, is_regex: bool = False, priority: int = 0) -> int:
    ...

Returns a list of all regex match of regex_pattern, similar to python’s re.search().

Searches for matches of a regular expression pattern within the text of this node and its extended nodes.

Args: regex_pattern (str): The regular expression pattern to search for. include_strings (bool): When False, excludes the contents of string literals from the search. Defaults to True. include_comments (bool): When False, excludes the contents of comments from the search. Defaults to True.

Returns: list[Editable]: A list of Editable objects corresponding to the matches found.

def search(self, regex_pattern: str, include_strings: bool = True, include_comments: bool = True) -> list[Editable]:
    ...

set_name

Sets the name of a code element.

Modifies the name of the object’s underlying name node. Works with both simple names and chained attributes (e.g., ‘a.b’).

Args: name (str): The new name to set for the object.

Returns: None

def set_name(self, name: str) -> None:
    ...

symbol_usages

Returns a list of symbols that use the exportable object or import it. Returns symbols that use this exportable object, including imports that import this exportable object. By default, returns all usages. This shows where this symbol is imported, but not where it is subsequently used.

Args: usage_types: The types of usages to search for. Defaults to any.

  • DIRECT: Direct uses of the symbol
  • CHAINED: Uses through method/attribute chains
  • INDIRECT: Uses through renamed imports
  • ALIASED: Uses through aliases

Returns: list[Import | Symbol | Export]: A list of symbols that use this exportable object, including imports that import it.

Note: This method can be called as both a property or a method. If used as a property, it is equivalent to invoking it without arguments.

def symbol_usages(self, usage_types: UsageType | None = None) -> list[Import | Symbol | Export]:
    ...

usages

Returns a list of usages of the exportable object.

Retrieves a list of all locations where the exportable object is used in the codebase. By default, returns all usages, such as imports or references within the same file.

Args: usage_types: Specifies which types of usages to include in the results. Default is any usages. (graph_sitter.core.dataclasses.usage.UsageType)

Returns: list[Usage]: A sorted list of Usage objects representing where this exportable is used, ordered by source location in reverse.

Raises: ValueError: If no usage types are specified or if only ALIASED and DIRECT types are specified together.

Note: This method can be called as both a property or a method. If used as a property, it is equivalent to invoking it without arguments.

def usages(self, usage_types: UsageType | None = None) -> list[Usage]:
    ...